
Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 1	

Department	of	Electrical	&	Electronic	Engineering	

Imperial	College	London	

2nd	Year	Laboratory	

Experiment:	FPGA	Design	with	Verilog	(Part	4)		

PART	4	–	Real-time	Audio	Signal	Processing	

1.0	 Putting	everything	together	

In	this	part	of	the	experiment,	you	will	learn	to	combine	the	ADC	with	the	DAC	on	the	Add-
on	card,	and	use	the	DE1	to	perform	some	simple	audio	processing.		

The	 goal	 of	 the	 final	 week’s	 laboratory	 session	 is	 to	 implement	 a	 speech	 echo	 effect	
synthesizer.	 	 You	 need	 to	 bring	 your	 earphone	 to	 the	 lab	 in	 order	 to	 listen	 to	 the	 audio	
output.		

2.0	 Experiment	16:	An	audio	in-and-out	(all	pass)	loop	

Download	 from	 the	 Experiment	 webpage	 the	 file	 ex16_proto.zip,	 which	 contains	 the	
prototype	folder	for	this	experiment.	

• Examine	the	contents	within	this	folder.		You	should	find	the	following	Verilog	files:	
	

Module	 Function	
ex16_top.v	 Top-level	design;	interface	to	pins	
spi2dac.v	 SPI	interface	circuit	to	DAC	from	Part	3	
spi2adc.v	 SPI	interface	circuit	to	ADC	
pwm.v	 Pulse-width	modulation	DAC	from	Part	3	
clktick_16.v	 Clock	divider	to	generate	sampling	clock	ticks	at	10kHz	from	Part	2	
pulse_gen.v	 Generate	a	one-cycle	pulse	on	rising	edge	of	a	trigger	signal	
hex_to_7seg.v	 Hex	to	7-segment	decoder	from	Part	1		
allpass.v	 “processor”	module	–	this	performs	processing,	which	simply	passes	input	

to	output.	

• Study	ex16_top.v.	 	 This	 specifies	 a	 system	 as	 shown	 in	 the	
following	diagram	(the	part	inside	the	Cyclone	V).		Make	sure	
you	understand	how	this	works.	

• Note	how	the	spi2adc.v	module	is	used.	Explicitly	associating	
the	signal	names	INSIDE	the	module	(e.g.	sysclk)	to	OUTSIDE	
(e.g.	 CLOCK_50)	 allow	 connections	 to	 be	 defined	
independent	 of	 the	 order.	 	 This	 is	 a	more	 verbose	 but	 is	 a	
much	safer	way	to	make	connections	to	modules.		

• The	 ADC	 has	 two	 analogue	 input	 channels:	 CH0	 and	 CH1.	 They	 connected	 to	 the	
potentiometer	and	to	the	3.5mm	socket	respectively.		We	only	use	CH1	for	ex16.	

• Now	examine	the	module	allpass.v.		The	name	of	this	module	is	“processor”	and	is	
different	from	the	name	of	the	Verilog	file.		There	is	no	need	to	use	the	same	name	
except	that	normally	it	is	more	convenient	to	do	so.		However,	in	this	case,	we	have	
deliberately	used	the	filename	“allpass”	to	describe	its	function,	while	using	a	more	
universal	 name	 for	 the	module.	 	 You	 can	 choose	 “allpass.v”	 as	 the	 source	 of	 the	
module	 “processor”	 now.	 	 Later,	 you	 can	 have	 a	 different	Verilog	 file	 to	 define	 a	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 2	

different	 “processor”.	 	 Which	 version	 of	 “processor”	 you	 use	 in	 your	 design	 is	
specified	in	Project	>	Add/Remove	File	in	Project.		

	

• Make	 sure	 that	 you	 understand	 fully	 what	 the	 Verilog	 file	 “allpass.v”	 does.	 	 It	
actually	does	very	little.	It:	

1. Corrects	 the	 ADC	 converter	 data	 (which	 uses	 offset	 binary	 with	 0V	
represented	 by	 a	 value	 of	 ~385),	 but	 subtracting	 the	 offset	 from	
data_out[9:0]	to	obtain	a	2’s	complement	value	x[9:0].	

2. Connects	X	to	Y,	i.e.	does	nothing	and	hence	“allpass”.	
3. Converts	the	Y	value	from	2’s	complement	to	offset	binary	for	the	DAC.	The	

offset	now	is	at	512	as	shown	below.	

	
• Build	your	design	for	testing	on	the	DE1	Board.		

To	do	this,	you	should:	
1. Open	 each	 .v	 file,	 and	 use	 Processing	 >	

Analyze	 Current	 File	 on	 each	 of	 the	
Verilog	 file	 to	 ensure	 that	 there	 is	 not	
syntax	error.	

2. Use	Project	>	Add/Remove	File	in	Project	
to	 include	all	 the	 .v	 files	you	need.	 	Here	
we	 select	 allpass.v	 to	 supply	 the	
“processor”	 module.	 	 In	 the	 future,	 you	
could	 substitute	 allpass.v	 with	 another	
file	for	a	different	processor.	

3. While	ex16_top.v	is	the	current	file	in	the	
editor	window,	use	Project	>	Set	as	Top-
level	 Entity	 to	define	 top	 is	 the	 top-level	
module.	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 3	

4. Use	 Project	 >	 Start	 >	 Analysis	 and	 Synthesize	 …	 	 to	 check	 for	 errors	 and	
warnings	without	compiling	everything.	

5. Check	that	Device,	Pin	and	TimeQuest	clock	period	are	all	assigned	correctly.	
6. Compile	 the	whole	design	and	download	 the	bit-stream	 file	 “ex16_top.sof”	 to	

DE1.	
7. Test	 that	 it	 is	 working	 properly.	 You	 can	 use	 the	 PC	 to	 play	 some	 music	 or	

speech	files	(downloadable	from	Experiment	webpage),	and	use	an	earphone	to	
listen	to	the	DAC	output.	 	When	no	signal	 is	sent	to	the	DE1	board,	the	display	
should	show	a	hex	value	of	181	to	188.	

When	you	get	to	this	part,	the	experiment	framework	is	shown	to	be	working.	It	takes	audio	
samples	 at	 10kHz	 from	 the	 ADC,	 passes	 it	 through	 a	 processor	 module	 and	 output	 the	
processed	sample	to	the	DAC.		

		

Test	yourself		

Now	create	a	new	Verilog	file	mult4.v	which	is	a	processor	module	(i.e.	module	name	is	still	
“processor”),	that	amplifies	the	input	by	a	factor	of	four.	 	Test	that	this	 is	working	(i.e.	the	
signal	to	the	earphone	should	be	louder	or	distorted).		The	easiest	way	to	multiple	by	4	is	to	
perform	arithmetic	left	shift	by	2	bits.	

	

	

3.0	 Experiment	17:	Echo	Synthesizer	with	fixed	delay	

In	 this	part	of	 the	experiment,	you	will	design,	 implement	and	test	a	circuit	 that	simulates	
the	 effect	 of	 simple	 echo.	 	 The	diagram	below	 shows	 two	 components	 of	 a	 sound	 source	
reaching	its	listener:	the	direct	path	signal	x(t)	and	the	echo	signal	b	x(t-T)	which	is	a	weaker	
version	 of	 x(t)	 attenuated	 by	 a	 factor	 b,	 bounced	 off	 the	 floor.	 	 The	 echo	 signal	 is	 also	
delayed	by	T	relative	to	the	direct-path	signal	x(t).	

	
Such	simple	echo	can	be	 implemented	as	signal	 flow	graph	as	shown	below.	 	This	 involves	
three	 components:	 a	 delay	 block	 that	 delays	 x(t)	 by	 K	 sample	 periods;	 a	 gain	 block	which	
multiplies	the	delayed	signal	by	the	factor	b;	and	the	adder.			

	 	
The	delay	block	can	be	implemented	with	a	first-in-first-out	(FIFO)	buffer.		A	FIFO	
is	 found	 in	 all	 forms	 of	 digital	 systems.	 	 The	 rule	 is	 simple:	 received	 data	 are	
stored	 in	 sequence	 in	 such	 a	way	 that	 they	 can	 be	 retrieved	 in	 the	 order	 that	
they	arrive.	When	a	new	data	item	arrives	and	the	FIFO	is	not	full,	it	is	written	to	
the	FIFO.	 	As	a	 stored	data	 item	 is	 retrieved,	 it	 is	 removed	 from	 the	FIFO.	This	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 4	

allows	the	send	and	retrieve	rates	to	be	different	in	the	short	term.	If	the	send	rate	is	higher	
than	retrieve	rate,	eventually	the	buffer	will	get	full.	If	the	buffer	is	full,	it	should	not	receive	
any	more	data	 (otherwise	existing	 store	data	would	be	corrupted).	A	“full”	 status	 signal	 is	
asserted	to	tell	the	sender	not	send	any	more	data.	Similarly	if	the	buffer	is	empty,	it	cannot	
provide	any	data	for	retrieval.		An	“empty”	status	signal	is	used	to	indicate	that	the	FIFO	has	
no	more	data	to	provide.	

Create	a	new	project	using	the	files	from	Experiment	16	as	your	prototype.		With	IP	Catalog	
tool,	 generate	 a	 FIFO	 component	 of	 size	 8192	 x	 10-bit	 as	 shown	 here.	 	 You	 only	 need	 to	
provide	only	the	“full”	status	signal.	This	FIFO	is	used	to	store	the	most	recent	8192	samples,	
hence	providing	a	delay	of	0.8192msec	since	the	sampling	frequency	 is	10KHz.	 	Before	the	
echo	simulation	circuit	starts	to	provide	the	echo,	the	FIFO	must	first	be	completely	filled	(i.e.	
wait	until	the	“full”	signal	 is	asserted).	 	Thereafter,	the	writing	of	the	ADC	sample	and	DAC	
sample	 is	 synchronous,	 and	 the	 FIFO	 remains	 full.	 The	 read	 data	 is	 always	 the	write	 data	
delayed	by	8192	sample	period.	

The	attenuation	factor	b	should	be	½	or	¼,	which	can	easily	be	implemented	with	a	simply	
binary	shift.		

	

Deliverable	

Implement	 the	 simple	 echo	 simulator	 and	 test	 that	 it	 works.	 	 For	 the	 purpose	 of	 test,	
download	three	different	sound	files:	clapping.mp3,	hello.mp3	and	hitchhiker.mp3,	and	play	
them	on	the	PC	or	phone	 in	a	 loop.	 	Use	your	earphone	to	 listen	to	the	effect	of	the	echo	
synthesizer.	

	

4.0	 Experiment	18:	Multiple	echoes	 	

The	 design	 in	 Experiment	 17	 produces	 a	 single	 echo.	 	 The	 signal	 flow	 graph	 only	 has	
feedforward	paths.		Multiple	echoes	can	be	produce	with	a	slight	modification	of	the	signal	
flow	graph	to	the	one	shown	below.			

	
The	 delay	 block	 now	 stores	 the	 output	
sample	 y(t)	 instead	 of	 the	 input	 sample	
x(t).	 	 The	attenuated	and	delayed	y(t)	 is	
SUBTRACTED	 from	 x(t)	 to	 produce	 the	
next	 output.	 	 (Why	 must	 this	 be	 a	
subtract	and	not	an	add?)	

	

Provide	 a	 design	 to	 implement	 this	
architecture	and	test	it.	

	

	

	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 5	

5.0	 Experiment	19	(Optional	challenge):		Echo	Synthesizer	with	Variable	delay		

In	this	experiment,	you	will	design,	implement	and	test	a	system	with	variable	delay.		A	bit-
stream	 (echo.sof)	 that	 implements	 a	 solution	 can	 be	 downloaded	 from	 the	 Experiment	
webpage.		You	also	need	to	download	the	three	MP3	test	files.		Connect	the	audio	input	to	
the	 speaker	 of	 the	PC	 and	play	 the	 audio	 files	 in	 a	 loop.	 	 Program	DE1	with	 echo.sof	 and	
listen	to	 the	output	with	your	earphone.	Change	the	delay	of	 the	echo	with	SW[8:0].	 	The	
amount	of	delay	in	millisecond	is	displayed	on	the	7-segment	displays	as	a	decimal	number.	

The	design	of	this	experiment	is	shown	in	the	block	diagram	below.		It	consists	of	a	number	
of	modules:	

• RAM	Delay	Bock	 -	 In	place	of	 the	FIFO	 to	 implement	 the	delay	block,	 it	uses	a	2-port	
RAM	block	(8192	x	9-bit)	–	one	write	port	(to	store	the	ADC	samples)	and	one	read	port.		

• Address	Generator	-	A	13-bit	counter	is	used	to	generate	the	read	address	to	the	RAM.	
(Why	13-bits?)	The	counter	value	is	incremented	on	the	negative	edge	of	the	data_valid	
signal	 at	 a	 frequency	 of	 10KHz.	 	 In	 this	 way,	 the	 address	 generator	 computes	 the	
address	used	on	the	next	read	and	write	cycle.		The	write	address	is	generated	from	the	
read	address	by	adding	the	value	taken	from	SW[8:0].		Since	the	address	is	13-bits	wide,	
the	9-bit	delay	value	 is	 zero-padded	 in	 its	 lower	4	bits.	 Therefore,	 the	delay	between	
the	read	and	write	samples	is:	SW[8:0]	x	16	x	0.1	msec.	

• The	read	and	write	enable	signals	are	common,	and	it	is	generated	from	the	data_valid	
signal	with	the	pulse_gen	module.			

• The	 write	 data	 value	 y[9:1]	 is	 9-bit	 instead	 of	 10-bit	 wide.	 	 This	 is	 because	 the	
embedded	memory	 in	 the	Cyclone	 III	 FPGA	 is	 configurable	as	9-bit	 in	data	width,	but	
not	10-bit.	 	Therefore	the	output	data	value	is	truncated	to	9-bit	before	storing	in	the	
delay	block.	

• The	 read	 data	 value	 is	 of	 course	 also	 9-bit	 wide.	 	 Therefore	 the	 x0.5	 can	 easily	 be	
implemented	by	sign-extending	the	9-bit	value	to	10-bit:		{q[8],q[8:0]}.	

• The	implementation	of	the	feedback	loop	to	generate	the	echo	effect	is	identical	to	that	
from	the	previous	experiment.	

• To	 display	 the	 delay	 value	 in	milliseconds,	 the	 value	 of	 SW[8:0]	 is	 first	multiplied	 by	
1638	(why)	with	a	constant	multiplier.		This	gives	a	20-bit	product,	the	most	significant	
10-bits	of	which	is	the	delay	in	milliseconds.	(Why?)		This	is	then	converted	from	binary	
to	BCD	and	decoded	for	display	on	the	7-segment	displays.	

	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 6	

	
	

6.0	 Experiment	20:		Voice	Corruptor	(Not	part	of	this	Lab)	 	

This	part	of	the	experiment	is	outside	the	scope	of	the	experiment.		It	is	designed	to	provide	
you	 with	 an	 open	 problem	 so	 that	 you	 can	 explore	 designing	 digital	 systems	 and	
implementing	digital	 circuits	using	 the	DE1	and	 the	add-on	card	at	 your	own	 leisure.	 	 You	
need	to	check	out	a	set	of	kits	to	take	home	from	stores.		For	example,	you	might	want	to	
try	this	out	over	the	Christmas	break.	

You	 are	 now	 equipped	with	 all	 the	 tools	 and	 knowledge	 to	 design	 a	 reasonably	 complex	
audio	 processing	 system.	 	 The	 idea	 here	 is	 to	 design	 something	 that	 will	 take	 a	 human	
speech	signal	and	then	“corrupt”	 in	a	way	that	the	identity	of	the	speaker	 is	masked	while	
the	speech	remain	intelligible.		

One	way	 to	do	 this	 is	 to	 change	 the	pitch	of	 the	 speaker	 (e.g.	make	 it	 sounds	 like	Donald	
Duck).	 	 	 There	 are	many	ways	 to	 perform	 pitch	 change	 of	 speech.	 One	method,	which	 is	
linked	 to	 the	 previous	 experiments,	 is	 to	 employ	 a	 technique	 based	 on	 cross	 fading	 (i.e.	
combining)	 of	 two	 separately	 delayed	 version	 of	 the	 speech	 signal.	 	 The	 technique	 is	
depicted	in	the	block	diagram	below.			

	
The	 sound	 source	 is	 delayed	 through	 two	 separate	 blocks,	 providing	 KA	 and	 KB	 sample	
delays,	which	vary	with	time.	 	The	delayed	signals	are	then	attenuated	by	GA	and	GB,	and	
combined	 with	 the	 adder.	 	 In	 order	 to	 minimize	 the	 artifacts	 and	 discontinuities	 in	 the	
output	signal	and	to	maintain	a	constant	volume,	the	gain	values	GA	and	GB	are	designed	to	
cross	fade	with	each	other	–	i.e.	when	one	is	ramping	up	(from	0	to	1),	the	other	is	ramping	
down.		A	plot	of	the	four	parameters,	KA,	KB,	GA	and	GB,	vs	time	is	shown	below.	



Department	of	EEE	
Imperial	College	London	

v5.0		-	PYK	Cheung,	12	Dec	2017	 	 Part	4	-		 7	

	
There	are	four	regions.			

1. Region	A	(t1	to	t2)	-	Only	channel	A	is	contributing	to	the	output.		The	delay	KA	
is	 gradually	 decreasing	 linearly	 from	 25.5ms	 to	 12.7ms	 (255	 to	 127	 x	 100µs).		
The	gain	GA	is	constant	at	1.	

2. Region	AB	(t2	to	t3)	–	Both	channels	contribute	to	the	output	with	A	decreasing	
and	 B	 increasing	 their	 respective	 contributions.	 	 The	 two	 channels	 are	 cross	
faded	before	GA	drops	from	1	to	0	while	GB	increases	in	the	other	direction.	

3. Region	 B	 (t3	 to	 t4)	 –	 This	 is	 similar	 to	 Region	 A,	 but	 the	 behavior	 applies	 to	
channel	B	instead	of	channel	A.	

4. Regions	BA	(t4	to	t5)	–	Similar	to	Region	AB,	but	the	two	channels	are	reversed.	

The	pattern	 repeats	 itself	 indefinitely.	 	Note	 that	 the	“don’t	 care”	portion	of	KA	and	KB	 is	
due	to	the	fact	that	during	this	period,	the	gain	GA	or	GB	is	zero.	

	

Hints:	

• Initially,	 try	 the	 delay	 ramping	 gradient	 of	 0.5,	 i.e.	 the	 delay	 is	 dropped	by	 k	 over	
time	2*k.	

• You	can	use	a	9-bit	down	counter	to	define	both	the	delay	KA	and	the	four	regions.	
• You	can	derive	all	other	values:	KB,	GA	and	GB,	from	the	counter	values.	
• You	 can	 design	 a	 four	 state	 synchronous	 state	 machine	 to	 control	 the	 corruptor	

circuit.	
• Instead	 of	 delay	 varying	 ramping	 high	 to	 0,	 you	 can	 reverse	 the	 direction	 of	 the	

ramping.		Alternative	you	can	design	the	delay	to	vary	up	and	then	down.	
• In	addition	to	pitch	changes,	you	may	explore	other	audio	effects.	


